SM08502, a novel, small-molecule CDC-like kinase (CLK) inhibitor, downregulates the Wnt signaling pathway and demonstrates antitumor activity in pancreatic cancer cell lines and in vivo xenograft models

¹Samumed, LLC, San Diego, CA; ²Formerly Samumed, LLC, San Diego, CA

Background

- Aberrant activation of the Wnt signaling pathway is implicated in multiple cancer hallmarks including proliferation, metastasis, and immune evasion¹
- This may also promote fibrogenesis in the tumor microenvironment characterized by stroma, which contributes to treatment resistance^{2,3}
- CDC-like kinases (CLKs) phosphorylate serine/arginine-rich splicing factors (SRSFs), which regulate spliceosome assembly and subsequent gene expression^{4,5}
- SM08502 is a novel, oral, small-molecule pan-CLK inhibitor that has demonstrated potent Wnt signaling inhibition in preclinical colorectal cancer models⁶
- These studies examined *in vitro* and *in vivo* activity of SM08502 in preclinical models of pancreatic cancer (PC)

Methods

- In vitro assays:
- Wnt pathway inhibition Expression of the Wnt-responsive TOP flash or EF1 α luciferase reporter gene constructs in cells (plated at ~10⁴ cells/well) incubated for 40 h in DMSO (vehicle) or SM08502 (Fig. 1)
- CLK inhibition Z'-LYTETM kinase assays (**Fig. 1**)
- Cell viability CellTiter-Blue[®] fluorescence assay (**Table 1**)
- Gene expression qRT-PCR after 20 h exposure to vehicle or SM08502 (1 μ M) using TaqMan[®] primers and normalizing expression to GAPDH (via $^{\Delta\Delta}$ Ct) (**Fig. 2**)
- Colony formation Cells were plated (1-5 x 10³ cells/well) and incubated with vehicle or SM08502 for 7 days; the colonies were then labeled with crystal violet (Fig. 3)
- Apoptosis Caspase-Glo[®] 3/7 detection assays on cultures were incubated overnight and then treated with vehicle, SM08502, or staurosporine at 37°C for 48 h (**Fig. 4**)
- All assays except the Wnt pathway and CLK inhibition assays utilized Capan-1, HPAFII, and Panc-1 PC cell lines
- In vivo assays:
- Mouse xenografts Nude mice were implanted in the right flank with Capan-1 or HPAFII cells and randomized into treatment groups when tumors reached ~100-200 mm³. Mice were orally treated with vehicle or SM08502 for 21 days and tumor growth inhibition (TGI) was calculated relative to vehicle
- Regressions were assessed according to Response Evaluation Criteria in Solid Tumors (RECIST) guidelines: 30-100% reduction in tumor volume relative to the start of the study. Tolerability was determined by average bodyweight change from baseline (<15% loss was considered well tolerated) (Figs. 5-6)
- Stroma modeling PC cells were implanted as above with or without cancerassociated fibroblasts (CAFs; VitroBiopharma CAF08 cell line or Bio-IVT primary human fibroblasts). TGI was calculated relative to respective vehicle group (**Fig. 6**)

Carine Bossard¹, Nathalia Cruz¹, Brian Eastman¹, Chi-Ching Mak¹, Sunil KC¹, Betty Tam², Gail Bucci¹, Josh Stewart¹, Timothy Phalen¹, Steven Cha¹

Figure 1. SM08502 is a potent CLK inhibitor that inhibits Wnt signaling in vitro

Table 1. SM08502 inhibited pancreatic cancer cell proliferation in vitro

KRAS Status	Cell Line	Mutation Profile	EC ₅₀ (μΜ)	Average EC ₅₀ (μΜ)	
Mutation	Capan-2	KRAS	0.526	0.222	
	HPAFII	KRAS,TP53,CDKN2A	0.098		
	MIA Paca-2	KRAS,TP53,CDKN2A	0.078		
	PANC-1	KRAS,TP53,CDKN2A	0.126		
	Su.86.86	KRAS,TP53, CDKN2A	0.188		
	YAPC	KRAS,TP53, SMAD4	0.155		
	HPAC	KRAS, CDKN2A, SMAD4	0.223		
	Capan-1	KRAS, TP53, CDKN2A, SMAD4	0.253		
	AsPC1	KRAS, TP53, CDKN2A, SMAD4	0.155		
	CFPAC1	KRAS, TP53, CDKN2A, SMAD4	0.490		
	Hs766T	KRAS, TP53, CDKN2A, SMAD4	0.155		
Wild Type	BxPC3	TP53, CDKN2A, SMAD4	0.211		
	Hs700T	TP53	0.222	0.168	
	SNU-324	CDKN2A	0.072		
	0.211				

Figure 2. SM08502 inhibited Wnt pathway-related gene expression in vitro

Results

Figure 5. SM08502 inhibited tumor growth in PC xenografts

Figure 6. SM08502 induced tumor growth inhibition in PC xenografts with and without CAF co-implantation

	Treatment	TGI	p-value	Regressions		
HPAFII	Vehicle	0%	1	0/6		
HPAFII	SM08502 25 mg/kg	71% [†]	0.022	1/6		
HPAFII + CAFs	Vehicle	-63%†	0.09	0/6		
HPAFII + CAFs	SM08502 25 mg/kg	85% [‡]	0.002	1/6		
n=6 mice/group; T-test, two-tailed, assume unequal variance						

n=9 or 5 (+CAF) mice/group; T-test, two-tailed, assume unequal variance Bold indicates significance; † vs. vehicle, ± vs. vehicle + CAFs

80%[‡] 0.005

0.421

1/5

65%[†] -44%†

Capan-1 + CAF

Capan-1 + CAFs|SM08502 25 mg/kg

Bold indicates significance; † vs. vehicle, ± vs. vehicle + CAFs

Average bodyweight loss was <5% from baseline with SM08502 treatment for Capan-1 and HPAFII xenografts

Poster #A02

Conclusions

- SM08502 exhibited *in vitro* antitumor activity in multiple PC cell lines
- SM08502 was active regardless of status of KRAS, a mutation that is present in >90% of PC tumors
- SM08502 induced apoptosis
- SM08502 exhibited potent *in vivo* antitumor activity
- Tumor growth was strongly inhibited with daily and intermittent dosing regimens
- The presence of CAFs in xenografts did not affect the activity of SM08502, suggesting that SM08502 could potentially overcome the tumor-protective effects of stroma in PC tumors
- SM08502 was well tolerated
- Together, these data suggest that SM08502 has potential as a novel treatment of pancreatic cancer
- A Phase 1 study assessing the safety, tolerability, and pharmacokinetics of SM08502 in subjects with advanced solid tumors is ongoing (NCT03355066)

References

- 1. Zhan T, et al. Oncogene. 2017;36:1461-73.
- 2. Lam AP and Gottardi CJ. Curr Opin Rheumatol. 2011;6:562-7.
- 3. Feig C, et al. *Clin Cancer Res.* 2012;16:4266-76.
- 4. Colwill K, et al. EMBO J. 1996;15:265-75. 5. Long JC, et al. *Biochem J*. 2009;417:15-27.
- 6. Bossard C, et al. J Clin Oncol. 2019(supp; abstr e15185).

All authors are employees, shareholders, or consultants of Samumed, LLC. Other disclosures are listed in the published abstract.

9381 Judicial Drive, San Diego, CA 92121 info@samumed.com