Ultra-selective DYRK1A/B Inhibitors Mediated β-Cell Proliferation In Vitro and In Vivo

Biosplice Therapeutics, Inc., San Diego, CA 92121

¹ gopi.mittapalli@biosplice.com

- Impaired β-cell function or β-cell loss is a major unmet need in diabetes and current treatments for diabetes do not address the loss of functional pancreatic β -cells: therefore, there is an urgent need to identify new therapeutic strategies
- DYRK1A, a member of the dual-specificity tyrosine phosphorylation regulated kinase family, is viewed as a promising new target to induce β-cell proliferation via its ability to modulate multiple growth regulatory pathways including NFAT signaling activation and derepression of DREAM complex target genes¹⁻³. In addition, the simultaneous inhibition of DYRK1A and DYRK1B has been shown to be more effective than inhibition of DYRK1A alone⁴
- However, there has been a paucity of potent, specific, and orally bioavailable DYRK1A/B inhibitors that did not target the related cdc2-like kinases (CLKs) and glycogen synthase kinase 3β (GSK 3β)⁵
- In this study, we present and have characterized two highly potent and selective inhibitors of DYRK1A/B. We utilized these inhibitors to assess the specific role of DYRK1A/B activity in β -cell proliferation

Compound ·	Biochemical IC ₅₀ (μM)		Target Engagement IC ₅₀ (μM)							% Full kinome	
	DYRK1A	GSK3β	DYRK1A	DYRK1B	DYRK2	CLK1	CLK2	CLK3	CLK4	inhibition @ 1 μM	0.0
Harmine	0.036	9.992	0.512	0.650	5.286	0.917	3.685	9.980	0.762	NA	Targe
SM15238	0.001	1.998	0.017	0.035	0.961	0.629	1.169	5.717	0.533	2.0	0.
SM15268	0.001	9.928	0.022	0.040	1.354	0.493	0.823	5.665	0.285	1.8	0.

- GSIS was performed sequentially in KRHB containing 2.8 mM and 16.7 mM Glucose for 2 hours each. Secreted insulin was quantified using ALPCO Stellux® Chemi Human Insulin ELISA. • Fig. 3: (A) Schematic of the study design to assess the effects of SM15238 and SM15268 in ~5-week-old male db/db mouse model. (B) Effects of treatments on body weights.
- 35 of the study using blood samples collected via tail vein into EDTA coated K2E tubes.
- for image analysis.

Gopi Kumar Mittapalli¹, PhD, Carine Bossard, PhD, Chi-Ching Mak, PhD, Erich A. Horsley, Christopher Swearingen, PhD, John S. Hill, PhD

Background

Calcineurin † Ca²⁺ **DYRK1A** inhibitor DYRK1A NFAT → β-cell proliferation High glucose

Pancreatic Islet

Adapted from Shen et al, Nature, 2015 and Belgardt & Lammert, Diabetes, 2016^{6,7}

• Fig. 1: (A) Table listing biochemical DYRK1A and GSK3β kinase inhibition IC₅₀ values were determined using the Promega NanoBRET by SM15238 and SM15268. Biochemical kinase assay IC₅₀ values were determined using the Promega NanoBRET TE Intracellular Kinase Assay platform in transiently transfected HEK293T cells. IC₅₀ values were determined from 10-point dose response curves using non-linear regression curve fit. Full kinome data is from Thermo Fisher Scientific SelectScreen[™] Profiling Service using compounds at 1µM (**B**) Dendrogram of the human kinome. Kinases inhibited at 90% or more by Biosplice compounds and showing an IC₅₀ less than 10-fold over DYRK1A IC₅₀ are highlighted with a blue circle and labeled accordingly. (C) In vitro β-cell proliferation assay using rat INS-1 cells treated for 2 days with SM15238 or SM15268 at the indicated concentrations. • Fig. 2: (A) InSphero study outline using standardized islet model, 3D InSightTM human Islet Cells and were treated for 4 days with each of the assessed compounds at the given concentrations using a Tecan D300e digital dispenser. Culture medium was exchanged and hIsMTs were dosed for each compound every 2 or 3 days. (B) Represent the mean + SEM of 1 donor with n = 6 – 10 technical replicates, as indicated on the graph. (C) Representative 3D confocal microscopy images of human islets treated with the same thresholding settings. Scale bar: 50 µm. (D) 3D image analysis of human islets microtissues treated for 4 days showing fold change of proliferating β-cell count (Edu⁺NKX6.1⁺) induced by compounds for 4 days. For the GSIS assay, the hIsMTs treated with compounds vs. solvent (DMSO). (E) Functional analysis of hIsMTs treated with compounds for 4 days. For the GSIS assay, the hIsMTs treated with compounds for 1 hour.

• Fig. 4: (A) Effects of treatments on 4-hour fasted insulin levels measured every week with Elisa using blood samples collected via tail vein into EDTA coated K2E tubes. (C) Effects of treatments on HbA_{1c} at Day 21 and Day

• Fig. 5: Histology analysis on pancreas collected at the end of study showing the treatment effects on i) β-cell count (**D**) and linsulin area (**B**) identified by glucagon staining. (**F**) Representative images of pancreatic islets histology analysis. Visiopharm software was used

• Fig. 6: Plasma PK profile of SM15238 (A) and SM15268 (B) measured at Day 20 of the study. (C) Table highlighting the C_{max} and AUC of both molecules plotted in panels A and B. Compounds were administered daily and PO.

Conclusions

- We have developed multiple small molecule DYRK1A/B inhibitors that are highly specific and potent for DYRK1A and DYRK1B
- Biosplice's DYRK1A/B inhibitors promoted β-cell proliferation and increased stimulated insulin secretion in human islets in vitro
- Biosplice's DYRK1A/B inhibitors showed high oral bioavailability (>100%) in rodents
- Oral administration of SM15238 and SM15268 dose responsively prevented the rise in HbA1c and resulted in sustained increased circulating 4hr fasted insulin levels
- Selective DYRK1A/B inhibition promoted β-cell proliferation, increased insulin and islets area without increasing α-cell number and glucagon area in db/db mice
- SM15268 45mg/kg reduced body weight gain, dosing regimen optimization will be evaluated
- These studies support further evaluation of Biosplice's DYRK1A/B selective inhibitors as a therapeutic option for Diabetes

Results

DIOSDICE

Abstract # 2024-A-4304 Poster 890-P

Compound	Dose (mg/kg)	AUC (ng.h/mL)	C _{max} (ng/mL)	%F	Unbound C _{avg} /0.3µM*
	10	10652	2837	132	NA
SM15238	15	10269	2286	NA	0.2
	45	55476	10859	NA	1.2
	10	22691	5297	137	NA
SM15268	15	58898	7731	NA	0.8
	45	206710	15259	NA	2.8

References

- 1. Karakose *et al.*, Diabetologia 2018
- 2. Kumar *et al.*, J.Med.Chem 2021
- 3. Wang et al., JCI 2022
- 4. Ackeifi et al., JCI Insight 2020
- 5. Lindberg MF. et al. J.Med.Chem 2023
- Shen W. et al., Nature communications 2015
- Belgardt BF. and Lammert E., Diabetes 2016