LORECIVIVINT (SM04690), A POTENTIAL DISEASE-MODIFYING TREATMENT FOR KNEE OSTEOARTHRITIS, DEMONSTRATED CARTILAGE-PROTECTIVE EFFECTS ON HUMAN OSTEOARTHRITIC EXPLANTS

V. Deshmukh, PhD ¹ , S. Grogan, PhD ² , T. Seo, MS ¹ , D. Bhat, MS ¹ , W. Bugbee, MD ² , D. D'Lima, MD, PhD ² , Y. Yazici, MD ¹
¹ Samumed LLC, San Diego, CA; ² Shiley Center for Orthopaedic Research and Education at Scripps Clinic

 Excessive Wnt pathway signaling contributes to osteophyte formation, cartilage degeneration, and inflammation¹ in knee osteoarthritis (OA)

 Lorecivivint (LOR) is an intra-articular (IA), small-molecule drug candidate that modulates Wnt pathway activity via CLK/DYRK1A inhibition²

Background

- LOR has demonstrated potential as a treatment for knee OA in randomized controlled trials, with improvements seen in pain and function as well as maintenance of radiographic medial joint space width in a target population³
- The cartilage-protective effects of LOR in knee OA were measured by assessing catabolic enzyme expression and activity in cartilage explants from human total knee replacement (TKR) donors

 LOR impaired pro-inflammatory cytokine-stimulated cartilage catabolism in human knee explant cultures compared with controls, as shown by suppression of:

Conclusions

Poster #166

- Gene expression of *MMP1*, *MMP3*, and *MMP13*
- Stimulated secretion of all tested catabolic enzymes
- Release of the cartilage catabolism byproducts GAG and NO
- These data indicate that LOR exerted protective effects on knee cartilage ex vivo despite previous OA-related joint damage
- The results support the development of LOR as a potential diseasemodifying treatment for knee OA. Phase 3 trials are ongoing

Results

Figure 1. Catabolic gene expression, enzyme secretion, and extracellular levels of catabolic end products in human TKR explants with and without LOR

A. Enzyme gene expression (explants)

Unstim Stim + LOR (10 nM) + LOR (30 nM)

N=22; Mean ± SEM; *P<0.05, **P<0.01, ***P<0.001 vs. DMSO, one-way ANOVA

2 hours

DMSO or LOR

References

Usami Y, et al. *Lab Invest.* 2016.
Deshmukh V, et al. *Osteoarthr Cartil.* 2019.
Yazici Y, et al. *Osteoarthr Cartil.* 2019.

All authors are employees, shareholders, collaborators, or consultants of Samumed, LLC. Other disclosures are listed in the published abstract.

9360 Towne Centre Drive, San Diego, CA 92121 USA info@samumed.com

 After receiving IRB approval from Scripps Health, knee joint tissue was obtained from 22 TKR donors through Scripps Clinic

Cartilage

Explants

72 hours

- Cartilage was assessed on the Outerbridge scale by gross appearance and graded from 1 (least damage) to 4 (most damage)
- Grade 2–3 explants (4 mm diameter) were harvested and cultured for 48 hours
- Explant cultures were either untreated and unstimulated (stimulated-catabolism controls), or treated with DMSO (control) or LOR (10 or 30 nM) and then stimulated with IL-1β (10 ng/ml) or TNF-α (20 ng/ml) + oncostatin M (OM; 10 ng/ml) per the timeline above
- Effects of LOR on cartilage catabolism (compared with DMSO) in the stimulated cultures were measured by:

Analysis

- qRT-PCR for gene expression of matrix metalloproteinases (MMPs) 1, 3, and 13

IL-1β

or

TNF- α + OM

 ELISA for release of MMP-1, MMP-3, MMP-13, and the thrombospondin motif-containing disintegrin/metalloproteinases ADAMTS-4 and ADAMTS-5

72 hours

- Dimethylmethylene blue and Griess assays for release of the degradation products glycosaminoglycan (GAG) and nitric oxide (NO), respectively
- Data analyzed via mixed-effects, one-way ANOVA. Outliers identified using extreme studentized deviate test (Grubb's test, α<0.001). Type 1 error controlled at α<0.05 using Dunnett's multiple comparison test, comparing both treatment dose groups independently with untreated group