The Patient Journey in Knee OA: Variations in Patient Characteristics and Treatment by Physician Specialty

Angela V. Bedenbaugh, PharmD¹, Gary Oderda, PharmD, MPH², Vinson C. Lee, PharmD, MS³, Jennifer Moller, BA¹, Diana Brixner, PhD, RPh², Sarah Kennedy, PhD¹, Timothy McAlindon, MD, MPH⁴, Jeyanesh R.S. Tambiah, MBChB, FRCS¹

¹Samumed, LLC, San Diego, CA, ²University of Utah Pharmacotherapy Outcomes Research Center, Salt Lake City, UT, ³The Kinetix Group, New York, NY, ⁴Tufts Medical Center, Boston, MA

Background

- Knee osteoarthritis (OA) affects an estimated 32.5 million US adults.1
- Knee OA is diagnosed and treated by multiple specialties and comprises conservative and pharmacological treatments, intra-articular (IA) injections, and surgery.
- Guidelines provide recommendations in idealized settings, but little documentation exists in real-world settings.
- This retrospective observational chart review aimed to assess patient characteristics and treatment patterns across 4 specialties: orthopedists (OS), rheumatologists (RH), sports medicine (SM) physicians, and pain specialists (PS).

Methods

- Physicians with ≥2 years of practice and ≥10 knee OA patients per week were interviewed about their 2 most recent knee OA patients. Interviews (structured questions and answers) conducted between March and April 2019 assessed demographics, referrals, comorbidities, time to treatment, and lines of treatment (Table 1 and Figure 1).
- Multiple responses were allowed for first-line treatments (over-the-counter nonsteroidal anti-inflammatory drugs/acetaminophen [OTC NSAIDs/APAP], prescription NSAIDs, IA corticosteroids, and IA hyaluronic acid) and reasons for discontinuation, which resulted in totals >100% (Figure 1 and Table 2).
- As this study was designed to assess effect modifications, a confidence level of 90% was used.
- This project was exempt from IRB review and HIPAA consent as no patient-identifying information was included.
- Limitations included potential selection bias, confounding by risk factors, inability to show causation, small sample size, and missing data.

Discussion and Conclusions

- Patients treated by orthopedists used significantly more OTC NSAIDs/APAP than patients treated by rheumatologists.
- Pain specialists saw more patients with pain syndromes/higher BMIs. Rheumatologists saw more patients with rheumatoid conditions.
- With the exception for opioids (safety), the primary reason for treatment discontinuation was lack of efficacy.
- Safety concerns were the second-line reason for treatment discontinuation for prescription NSAIDs and COX-2 inhibitors.
- Although differences in patient characteristics and comorbidities existed, treatment strategies were similar across specialties. Newer treatments may provide additional options for existing treatments that have efficacy or safety concerns.

Table 1. Demographic and Clinical Characteristics Stratified by Diagnosing Physician

	Total Patients N=854	Ortho Surgeons (OS) n=352	Rheumatologists (RH) n=250	Sports Medicine (SM) n=152	Pain Specialists (PS n=100
Mean age (years)	65.2	65.5 [¢]	65.4 [°]	63.3	66.3 [°]
65 years of age or older (total)	56% (n=476)	56% (n=198) ^c	58% (n=145) ^c	47% (n=71)	62% (n=62) ^c
Male	49% (n=419)	53% (n=185) ⁹	42% (n=106)	51% (n=77)	51% (n=51)
Female	51% (n=435)	47% (n=167)	58% (n=144)*	49% (n=75)	49% (n=49)
Mean BMI	30.7	30.2	29.8	33.0	31.648
BMI≥35	22% (n=189)	17% (n=61)	18% (n=45)	32% (n=49) ⁴⁸	34% (n=34)**
Not currently employed (total)	59% (n=503)	57% (n=201)	60% (n=150)	52% (n=79)	73% (n=73) ^{ABC}
- Due to functional dysfunction	7% (n=30)	5% (n=8)	7% (n=10)	5% (n=3)	15% (n=9) ^{ABC}
Mean pain (0–10 NRS)	5.6	5.5	5.5	5.5	6.5 ^{ABC}
Bilateral OA (total)	50% (n=428)	41% (n=146)	62% (n=96) ⁴⁰⁰	49% (n=77)	51% (n=49)
Comorbidities					
Average # of comorbidities	2.6	2.3	2.6*	2.84	3.248
Hypertension	57% (n=485)	59% (n=206)	57% (n=142)	57% (n=87)	50% (n=50)
Obesity	38% (n=326)	33% (n=117)	40% (n=99) ⁴	46% (n=70)	40% (n=40)
Hyperlipidemia	33% (n=279)	28% (n=98)	36% (n=89)*	41% (n=63) ⁴⁰	29% (n=29)
Type 2 diabetes	25% (n=210)	22% (n=76)	22% (n=54)	33% (n=50) ^{AB}	30% (n≈30) [▲]
Chronic back pain	21% (n=182)	17% (n=60)	19% (n=48)	24% (n=36) ^A	38% (n=38) ^{ABC}
Anxiety/depression	19% (n=160)	17% (n=59)	16% (n=41)	21% (n=32)	28% (n=28)48
CVD	18% (n=155)	18% (n=64)	15% (n=38)	17% (n=26)	27% (n=27) ^{ABC}

Results

Table 2. Reasons for Discontinuation

Treatment (Are Using or Have Used); n (%)	Duration (Mean)	DC'd % (n)	Top Reasons for Discontinuation	
OTC NSAIDs, patches, or creams; n=660 (73%)	4.4 years	27% (177)	48% (n=85) lack of efficacy 37% (n=66) worsening of symptoms 15% (n=26) residual symptoms 19% (n=33) unknown	
Acelaminophen, n=606 (71%)	4.8 years	28.5% (173)	57% (n-98) lack of efficacy 25% (n-44) worsening of symptoms 13% (n-23) residual symptoms 20% (n-25) unknown	
Prescription NSAIDs (oral or topical), n=581 (66%)	3 7 years	31.5% (177)	38% (n=67) lack of efficacy 27% (n=47) safety concerns 19% (n=33) side effects 14% (n=24) unknown	
COX-2 inhibitors; n=261 (31%)	2.6 years	49.4% (129)	41% (n=53) lack of efficacy 21% (n=27) safety concerns 18% (n=23) cost 15% (n=17) unknown	
Opioids; n=173 (20%)	3.2 years	32% (55)	51% (n=26) safety concerns 36% (n=20) side effects 16% (n=9) lack of efficacy 16% (n=10) unknown	
Prescription antidepressants, n=89 (10%)	3.0 years	25% (22)	36% (n=6) lack of efficacy 15% (n=4) side effects 36% (n=6) unknown	
Injectables				
IA corticosteroids, n=512 (60%)	1.4 years	82.4% (422)	17% (n=73) lack of efficacy 14% (n=59) cost of medication 12% (n=50) worsening of symptoms 45% (n=201) unknown	
A hyaluronic acid; n=187 (22%) "Reasons for discontinuation are not mutually exclusive	2.0 years	52.4% (98)	61% (n=60) lack of efficacy 22% (n=22) worsening of symptoms 12% (n=12) residual symptoms 9% (n=9) cost 10% (n=10) unknown	

References: 1) United States Bone and Joint Initiative: The Burden of Musculoskeletal Diseases in the United States (BMUS), Fourth Edition. Rosemont, IL

AVB, SK, and JRST are employees and shareholders of Samumed, LLC. GO, VCL, DB, and TM are consultants of Samumed, LLC. JM was an employee of Samumed LLC at the time of the study.